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1. Introduction

Many extensions beyond the standard model (SM) predict a dark matter candidate, that

is, a massive stable particle interacting weakly with the SM particles. These include the

minimal supersymmetric standard model (MSSM) with R-parity, universal extra dimension

(UED) models [1] with KK-parity, little Higgs models with T-parity (LHT) [2] and so forth.

A common feature of these models is that they all possess an exact parity, under which

the SM particles are even and some new physical states are odd. Therefore the lightest

parity-odd particle is stable and plays the role of the dark matter candidate. At a collider,

the parity odd particles must be produced in pairs. Each of them will then go through

cascade decays ending at the stable particle. Because it is weakly interacting, the stable

particle will escape the detector without being detected, leaving missing energy signals.

The Large Hadron Collider (LHC) will start collisions and collecting data very soon.

Once large missing energy signals are detected at the LHC, it is crucial to investigate the

properties of the new particles involved in the events, in order to identify the underlying

theory, as well as to determine if the invisible particle is a viable dark matter candidate.

Of particular interest are the masses of the new particles, including the invisible one. Due

to the fact that there are always two or more invisible particles in each of such events, mass

determination will be a difficult task. For a hadron collider, the total momentum in the

beam direction is not measured, making it even more challenging.

Distributions of some simple kinematic variables such as /pT , ET and Meff [3] have

been used to give estimates of the masses of the new particles. However, these variables

are mostly sensitive to the mass differences of the new particles, instead of the absolute

mass scale. On the other hand, the total production cross section and the full likelihood
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method require knowledge of the underlying physics such as the matrix elements, and

hence are model-dependent. Measurements of the new particle properties should be the

first step towards uncovering the underlying theory instead of the other way around. It is

therefore desirable to be able to determine masses in a model-independent way by using

only kinematics. Traditionally, this has been done by looking for the edges/endpoints

of various invariant mass distributions of the visible particles [4]. The positions of these

edges/endpoints are functions of the masses of the particles involved in the decay chains.

If the decay chains are long enough, there may be enough independent invariant mass

endpoints involving the visible SM particles, which allows one to reverse the relations

to obtain the masses. Nevertheless, this method applies to individual decay chains and

can only work for the long decay chains (4 or more on-shell particles in a decay chain).

It does not utilize all information in the events such as the measured missing transverse

momentum. Consequently, a large number of events are required to distinguish and measure

all edges/endpoints in order to achieve a reasonable determination of the masses. It is

therefore important to develop new mass determination techniques which are more powerful

and can also be applied to shorter decay chains for events involving invisible particles.

Recently, along this direction, two kinds of mass determination techniques have been

proposed. One of them utilizes the “kinematic constraints” [5 – 7]. Assuming that the event

topology is known, one can try to reconstruct the kinematics event by event, by imposing

the mass-shell constraints and the constraint from the measured missing transverse momen-

tum, /pT . Depending on how many constraints that we can impose, the detailed methods

can be different. In ref. [6], the authors considered events with two identical decay chains,

each containing two visible particles. Assuming that all intermediate particles are on-shell,

the two invisible particles’ momenta can be solved for given trial masses. Requiring the

solutions to be physical, one can determine the masses by examining the number of solv-

able events for all possible trial masses. Another method requires longer decay chains and

therefore more constraints. It is then possible to combine multiple events and solve directly

for the masses and the momenta, without assuming any trial masses [7]. This technique

has been combined with the edge/endpoint method to achieve further improvement [8].

In a seemingly parallel approach, several authors have studied mass determination

methods using the variable mT2 [9], which is sometimes called the stransverse mass. mT2

is defined event by event as a function of the invisible particle mass. Its endpoint or maximal

value over many events, denoted by mmax
T2 , gives an estimate of the mother particle’s mass

in the beginning of the decay chain. When the invisible particle’s mass is unknown, one has

to use a trial mass to calculate mT2 and only obtains an estimate of the mass difference.

However, it has been shown in ref. [10] that if the two mother particles decay through three-

body decays to the invisible particles, a “kink” occurs on the mmax
T2 curve as a function of

the trial mass. The position of the kink is actually at the true value of the invisible particle

mass, which allows us to simultaneously determine the masses of both the invisible particle

and its mother particle. A generalized study of the kink method is available in ref. [11].

The purpose of this paper is to clarify the relation between the two mass determination

techniques, i.e., the one using kinematic constraints and the one using the variable mT2.

An apparent difference between the two approaches is that the former uses the 4-momenta
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Figure 1: An event with two invisible particles N , each from a decay of a heavy particle Y .

of the visible particles, while the latter is defined solely on the plane transverse to the

beam direction. Nevertheless, due to the lack of total momentum measurement in the

beam direction, the longitudinal momenta of the two invisible particles can be arbitrarily

chosen, offsetting some of the information obtained from the visible particles’ longitudinal

momenta. As a consequence, mT2 is equivalent to the “minimal” kinematic constraints

discussed below.

We illustrate our definition of “minimal” constraints in figure 1. Two mother particles

of the same mass, mY , each decays to a dark matter particle of mass mN , plus some visible

particles, either directly or through other on-shell particles. Since the two masses are un-

known, we have to assume some trial masses, denoted by µY and µN . Upstream transverse

momentum (UTM) can be present but it must be known. The “minimal” constraints are

then defined as the mass-shell conditions from µY and µN , plus the constraint from the

measured /pT . Obviously, for a given trial mass of the invisible particle µN , the mother

particle cannot be too light otherwise we cannot obtain physical momenta for the invisi-

ble particles. As we will see, we can satisfy the minimal constraints and obtain physical

momenta if and only if µY ≥ mT2. We note that this fact has been implicitly used in

ref. [12], and we give a detailed account in this article. An important by-product of our

discussion is that we develop a new algorithm to calculate mT2 which is 5–9 times as fast

as the currently available program.

Since mT2 corresponds to the minimal kinematic constraints, it can serve as a start-

ing point for mass determination with more complicated topologies. The aforementioned

“kink” method is an example. The m2C variable defined in ref. [12] is another example, in

which the authors combine mT2 with the measurement of the invariant mass distribution

endpoint. We will give more examples in this article.

The paper is organized as follows. In the next section, after reviewing the definition

of mT2, we prove that it is equivalent to the minimal kinematic constraints. Deriving mT2

from kinematic constraints also provides us a fast algorithm for calculating mT2, which is

presented in section 2.3. In section 3, we discuss some mass determination methods from
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our understanding of the relation between mT2 and kinematic constraints. A more general

discussion of kinematic constraints and conclusions are contained in section 4.

2. mT2 from kinematic constraints

2.1 The definition of mT2

The definition of mT2 is motivated from the transverse mass mT , which is defined for

events with one invisible particle at a hadron collider. In this case, the measured missing

transverse momentum is equal to the transverse momentum of the invisible particle. mT

has been used, for example, in the measurement of the W boson mass in the decay W → ℓν.

Using the notation of the W decay, mT is defined by

m2
T = m2

ℓ + m2
ν + 2(Eℓ

T Eν
T − pℓ

T · pν
T ), (2.1)

where mℓ and mν are respectively the masses of the lepton and the neutrino, and pℓ
T

and pν
T are their transverse momenta. The beams are chosen to be along the z direction,

therefore pT = (px, py). Eℓ
T , Eν

T are transverse energies defined by

Eℓ
T =

√
m2

ℓ + |pℓ
T |

2, Eν
T =

√
m2

ν + |pν
T |

2. (2.2)

For convenience, we use α to denote the 2+1 dimensional momentum, α = (ET ,pT ), while

the 4-momentum is denoted by p. In the 2+1 dimensional notation, the transverse mass is

given by

m2
T = (αℓ + αν)2. (2.3)

The following relation is always satisfied for the physical momenta pℓ, pν and the corre-

sponding 2+1 dimensional momenta:

(pℓ + pν)
2 ≥ (αℓ + αν)2. (2.4)

The equality holds if and only if ℓ and ν have the same rapidity, which is given by

η =
1

2
ln

(
E + pz

E − pz

)
. (2.5)

When the event contains two or more missing particles, we can no longer calculate

the transverse mass because the transverse momentum of the individual missing particle is

unknown. As mentioned in the Introduction, a particular interesting case is that there are

two decay chains in the event, each ends with an invisible particle of species N . We further

assume that each decay chain also contains a particle of species Y , decaying to the particle

N plus some visible particles. This is illustrated in figure 1, where we have labeled the

invisible particles as 1 and 2, and summed the visible 4-momenta to pa and pb for the two

decay chains respectively. We will treat a and b as two particles whose masses may vary

from event to event. There can be other upstream transverse momentum (UTM) from, for

example, initial state radiation or heavier particle decays. However, it is important that 1

and 2 are the only invisible particles.
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Comparing with the W decay example, we see two difficulties associated with the above

decay chains. First, mN , the mass of the particle N is a priori unknown. Second, only

the sum of the two invisible particles’ transverse momenta is measured. These difficulties

motivated the authors of ref. [9] to define a quantity mT2, using a trial N mass (denoted

by µN ) and minimizing over all possible partitions of the measured transverse momentum:

m2
T2(µN ) ≡ min

p1

T
+p2

T
=/p

T

[
max{m2

T (p1
T , pa

T ; µN ), m2
T (p2

T , pb
T ; µN )}

]

= min
p1

T
+p2

T
=/p

T

[
max{(α1 + αa)

2, (α2 + αb)
2}

]
, (2.6)

where in the second line we have rewritten the transverse mass using the 2+1 dimensional

notation. By definition, mT2 is an event-by-event quantity depending on the trial mass

µN . Therefore, strictly speaking it is not a variable, but a function of µN . For a given

µN , we can examine the mT2 distribution for a large number of events, which in general

has an end point. As discussed in ref. [9], the mT2 end point gives the correct mass of

the particle Y when the trial mass is equal to the true mass of the missing particle N ,

µN = mN . We can therefore use mT2 to determine mY if mN is known, analogous to

the W mass measurement. Moreover, it has recently been shown [10] that, even if mN is

unknown, in some cases, when we plot the mT2 endpoint as a function of the trial mass

µN , there is a kink at µN = mN . Thus both mN and mY can be determined by studying

the mT2 distribution.

We will discuss mass determination using mT2 in section 3. Before that, we first give

an alternative definition of mT2, using the concept of kinematic constraints.

2.2 mT2 from minimal kinematic constraints

By kinematic constraints, we mean two kinds of constraints imposing on the 4-momenta

of the invisible particles: the mass shell constraints and the measured missing transverse

momentum constraints. Specifically, for the event in figure 1, we can write down the

following equations:

p2
1 = p2

2 = µ2
N ,

(p1 + pa)
2 = (p2 + pb)

2 = µ2
Y ,

px
1 + px

2 = /px,

py
1 + py

2 = /py, (2.7)

where µY is a trial mass for the particle Y . We call this set of constraints “minimal” because

they correspond to the shortest decay chains. Note that for a given set of (µN , µY ), the

system contains only 6 equations, which are not enough for completely determining p1

and p2. Nevertheless, eqs. (2.7) still constrain the possible (µN , µY ). In particular, we will

shortly see that for a given µN , eqs. (2.7) can be satisfied for some physical momenta p1 and

p2 if and only if µY > mT2(µN ). Here, a momentum is “physical” if all of its components

are real and the energy component is positive. In other words, mT2(µN ) can be defined
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as the boundary of the consistent region on the (µN , µY ) plane, subject to the minimal

constraints in eqs. (2.7). This fact has been used in ref. [12] but without a clear proof.

First, it is easy to show that µY cannot go below mT2 for a fixed µN . For any (µN , µY )

in the consistent mass region, there exist physical p1 and p2 satisfying eqs. (2.7). On the

other hand, from eq. (2.4), we have

µ2
Y = (p1 + pa)

2 = (p2 + pb)
2 ≥ max{(α1 + αa)

2, (α2 + αb)
2}. (2.8)

By definition, mT2 is the minimum of max{(α1 + αa)
2, (α2 + αb)

2} over all partitions of

the missing transverse momentum. Therefore, we conclude that µY ≥ mT2(µN ).

For the reverse direction we need to prove that for a given µN , the point (µN , mT2(µN ))

is indeed in the consistent mass region. By the definition of mT2, there exist physical 2+1

dimensional momenta satisfying

α2
1 = α2

2 = µ2
N ,

m2
T2 = (α1 + αa)

2 ≥ (α2 + αb)
2,

px
1 + px

2 = /px,

py
1 + py

2 = /py. (2.9)

Note that if (α1 + αa)
2 < (α2 + αb)

2, we can simply exchange the labels. Given α1 and

α2, we can arbitrarily choose p1z and p2z (or equivalently, the rapidities η1, η2) of particles

1 and 2, and eqs. (2.9) are still satisfied. In particular, we can choose a p1z such that

η1 = ηa. In this case we have (p1 + pa)
2 = (α1 +αa)

2 = m2
T2. As for the other decay chain,

if (α2 + αb)
2 = m2

T2, we choose η2 = ηb; if (α2 + αb)
2 < m2

T2, we have (p2 + pb)
2 < m2

T2

when η2 = ηb, and (p2 + pb)
2 → ∞ when η2 → ±∞, as a result, there exists an η2 such

that (p2 + pb)
2 = m2

T2. In this way we obtain physical momenta p1 and p2 which satisfy

eqs. (2.7) with µY = mT2(µN ). This concludes our proof.

2.3 Calculating mT2

In the previous subsection, we have shown that mT2 is the boundary of the mass region

consistent with the minimal kinematic constraints. This provides us not only a way to

understand mT2, but also an effective method of calculating it.

We start by discussing how to determine if a mass pair (µN , µY ) is consistent with the

constraints in eqs. (2.7). Note that mT2 is invariant under any independent longitudinal

boosts for the particles a and b. This allows us to set pz
a and pz

b to zero for convenience.

We also assume ma > 0 and mb > 0 for the moment.

We first consider the decay chain involving particles 1 and a. From the mass shell

constraints p2
1 = µ2

N and (p1 + pa)
2 = µ2

Y , we can express E1 in terms of px
1 and py

1:

E1 =
px

a

Ea
px
1 +

py
a

Ea
py
1 +

µ2
Y − µ2

N − m2
a

2Ea
. (2.10)

In order to have p1 physical, we must have

−pz2
1 = −(E2

1 − px2
1 − py2

1 − µ2
N ) ≤ 0. (2.11)
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Figure 2: The unbalanced solution (left) and the balanced solution (right). The red (dashed)

ellipse and the red point are the two ellipses when µY = µN +ma. For the unbalanced solution, the

point is inside the red ellipse, and mT2 = µN + ma. For the balanced solution, the point is outside

the red ellipse, and mT2 is given when the two ellipses (solid blue) are tangent to each other.

eq. (2.11) imposes a constraint on possible px
1 and py

1. It is straightforward to show that

the allowed (px
1 , py

1) is the region enclosed by an ellipse. We will distinguish an ellipse and

the region that it encloses by calling the latter an “elliptical region.” The size of the ellipse

depends on µY monotonically. In particular, it shrinks to zero when µY = µN + ma, in

which case all three particles have the same velocity.

The other decay chain is completely analogous, and we obtain another elliptical region

for (px
2 , py

2). However, the two decay chains are related by the measured /pT . Therefore, we

can eliminate px
2 and py

2 to put the second elliptical region also on the (px
1 , py

1) plane. In

order to satisfy all the constraints, the two elliptical regions must overlap. Since that the

two ellipses both expand as we increase µY , mT2 will be given by the minimal µY when

the two elliptical regions start to overlap. To proceed we need to distinguish two cases,

which are illustrated in figure 2 and discussed below.

We assume ma ≥ mb for the invariant masses of a and b without loss of generality.

We see that we must have µY ≥ µN + ma, otherwise the first ellipse vanishes. When

µY = µN + ma, the first ellipse becomes a point, while the second ellipse has a finite

size (or is also a point if ma = mb). If the point (first ellipse of zero size) is within the

second elliptical region, then mT2 is simply given by mT2 = ma + µN . This is called the

“unbalanced configuration” in ref. [13].

The other possibility is that the point representing the zero-sized first ellipse when

µY = µN + ma is outside the second ellipse. In this case, we have to increase µY until the

two elliptical regions overlap to obtain solutions. mT2 is then given by the value of µY when

the two ellipses are tangent to each other. This is dubbed the “balanced configuration” [13].

Now it is clear how to calculate mT2. For a given µN , we first check if the two

ellipses give us an unbalanced configuration when µY = µN + ma. If so, we have mT2 =

µN + ma. Otherwise, we need to look for the µY when they are tangent. The two ellipses

are described by two quadratic equations, which can be reduced to a univariate quartic

equation. When the ellipses are tangent, the quartic equation has degenerate roots and
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therefore its discriminant vanishes. The discriminant is in general a 12th order polynomial

function of µ2
N and µ2

Y . This provides an analytical relation between µN and mT2(µN )

which has not be obtained in the literature before for the case of non-vanishing UTM.

Although it would not be the most efficient way to do the calculation, in principle one can

numerically solve the polynomial equation and obtain mT2. Of course, there can be more

than one real solutions for the equation. One should keep the smallest positive µY as mT2

since this is the first time the two ellipses are tangent.

It is convenient to use the discriminant when the UTM vanishes. In this case, the

equations are simplified so that the 12th order equation is reduced to a 4th order one, for

which analytical solutions are available. This confirms the existence of analytical solutions

in the zero UTM case discussed in ref. [13]. When UTM is nonzero, solving a 12th order

equation is numerically slow and unstable. We have developed a faster and more robust

algorithm for calculating mT2, which is described in detail in appendix A. The basic idea

is that: we know that the two ellipses do not intersect when µmin
Y = µN + ma and we can

also find a µmax
Y when they do intersect by an educated guess. Then mT2 must be within

the interval (µmin
Y , µmax

Y ). Whether the two ellipses intersect can be tested easily by the

Sturm sequence [14]. We repeatedly bisect the interval while keeping the mT2 within it,

until we reach the desired precision.

In the above discussion, we have assumed that ma,b > 0. When either ma or mb (or

both) vanishes, the corresponding ellipse becomes a parabola, but the treatment remains

the same.

3. Mass determination using mT2

The simplest application of mT2 is to determine mY from the mT2 endpoint when mN is

known. However, it is often the case that mN is also unknown, and we want to determine

both masses simultaneously. The merit of mT2 is that it corresponds to the minimal

constraints. Therefore it is always well-defined and calculable, which may prove useful at

the early stage of the LHC [15]. If more information is available, we can develop more

complicated methods based on mT2.

If each decay chain in the events involves only a single two-body decay, i.e., Y decays

to N plus a single visible particle with fixed mass, it is impossible to determine both masses

from pure kinematics. If we consider two identical decay chains, the next simplest case is

then that each decay chain contains two visible particles, which is illustrated in figure 3.

When the particles in the two decay chains are identical, we can divide the situations

into four cases, depending on whether there is significant UTM, and whether the inter-

mediate particle X is on shell or off shell. The latter determines whether the particle Y

decays to N through a three-body decay or two consecutive two-body decays. For the two

two-body decay cases, we would like to determine mX as well. The cases with zero or

negligible UTM are discussed in ref. [10]. The authors pointed out that mmax
T2 , the mT2

endpoint value as a function of µN , has a kink at µN = mN . In practice, it is difficult

to identify the kink due to experimental smearing, but the formula for the mmax
T2 curve is

known, which make it possible to fit the position of the kink.

– 8 –
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Figure 3: The event topology with 2 visible particles per decay chain. The particle X can be

either on shell or off shell.

When the events have significant UTM, the situation is different. UTM can come from

initial state radiation or heavier particle decays. For the latter, an example in MSSM is

the decay chain

q̃ → qχ̃0
2 → qℓℓ̃ → qℓℓχ̃0

1, (3.1)

where particles χ̃0
2, ℓ̃ and χ̃0

1 are identified with Y , X and N respectively. The quark

from squark decay can be very energetic, providing large UTM to the system. In this

case, mmax
T2 curve is different from the vanishing UTM case and an analytical formula is in

general unavailable. We focus on this case in the following, taking the process in (3.1) as

an example.

We consider two mSUGRA points, one with mℓ̃ > mχ̃0

2

and the other one with mℓ̃ <

mχ̃0

2

, corresponding to the three-body decay case and the two-body decay case respectively.

The former is chosen to be the same as the model P1 in ref. [12] for comparison. The latter

is the Snowmass SUSY point SPS1a [16].

1. m0 = 350 GeV, m1/2 = 180 GeV, tan β = 20,

sign(µ) = +, A0 = 0;

meχ0

2

= 123.7 GeV, mℓ̃R
= 358.6 GeV, meχ0

1

= 70.4 GeV .

2. m0 = 100 GeV, m1/2 = 250 GeV, tan β = 10,

sign(µ) = +, A0 = −100;

meχ0

2

= 181.0 GeV, mℓ̃R
= 143.7 GeV, meχ0

1

= 100.4 GeV.

The spectra are calculated with SPheno [17]. We have generated 1000 events for each

case with MadGraph/MadEvent at the parton level. In this paper, we will only consider

the ideal case, i.e., no background, the particles are exactly on-shell, and there is no

experimental smearing or wrong combinatorics for the visible particles. Nevertheless, we

have avoided using features that is easily lost after the above effects are included, such as

a kink structure, and expect our methods to be valid for realistic cases. A realistic study

is left for a future publication.
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Figure 4: Number of consistent events as a function of (µN , µY ) for 1000 events, in the three-

body decay case. The solid lines are the contours in 100 event intervals, beginning from 1000 for

the top contour. The dashed line is the function µY − µN = M
−
.

We first discuss the three-body decay case. Again, it is illuminating to think about

mT2 as kinematic constraints. We have seen that for one event, the consistent mass region

on the (µN , µY ) plane is above the mT2 curve. Using this fact, for multiple events we

can easily count the number of events consistent with a given mass point. Figure 4 is

the contour plot for the number of consistent events. In particular, above the uppermost

contour, which we identify as the mmax
T2 curve, the masses are consistent with all 1000

events. A kink structure in the mmax
T2 curve is visible. However it will be smeared by

experimental resolutions and we avoid using it.

Similar to ref. [12], we can assume that the mass difference M− = mY −mN is already

measured with good precision from the endpoint of the dilepton invariant mass distribution.

Indeed, due to branching ratios, it is often the case that there are many more dilepton events

than four-lepton events and therefore the mass difference can be measured much better.

Drawing a line corresponding to µY − µN = M− on the (µN , µY ) plane, we see that it

intersects some of the contours and touches the mmax
T2 curve only at µN = mN . We can

draw the number of consistent events as a function of µN , along the line µY − µN = M−,

as shown in figure 5. As expected, the number is maximized at µN = mN . This is in

some way equivalent to the approach in ref. [12], where event-by-event lower and upper

bounds for mY are obtained by intersect the mT2 curve with the line µY − µN = M−.

The distribution in figure 5 is an integral of the upper and lower bound distributions of

ref. [12]. Presenting in this way allows easy generalizations to other cases. To minimize

the statistical error, instead of simply reading the maximum in figure 5, we can also fit the

distribution to template distributions around the true mN , analogous to ref. [12].

We now turn to the two-body decay case. In this case, the particle X is on-shell, which
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Figure 5: Number of consistent events along the line µY − µN = M
−

, in the three-body decay

case.

gives us constraints in addition to eqs. (2.7) (where pa = p3 + p5 and pb = p4 + p6):

(p1 + p3)
2 = (p2 + p4)

2 = µ2
X , (3.2)

where µX is a trial mass for X. Unlike the minimal constraints, the system given by

combining eqs. (2.7) and (3.2) can be solved event by event to yield discrete solutions for

p1 and p2 (up to a four-fold ambiguity).1 Depending on whether the solutions are physical,

we can determine if an event is consistent with a given set of masses (µN , µX , µY ). This fact

is used in ref. [6] to determine all three masses by examining the distribution of the number

of consistent events. There, the masses are obtained through a series of one-dimensional

recursive fits. In the following, we present a simplified method utilizing the mmax
T2 curve.

The idea is that we can follow the mmax
T2 curve, which gives us a relation between mY and

mN , and count the number of consistent events. Depending on whether we want to use

measurement from the dilepton invariant mass distribution like in the off-shell case, the

method is slightly different.

It is well known that for the decay chain in (3.1) with ℓ̃ on shell, there is a sharp edge

in the dilepton invariant mass distribution at

m2
ℓℓ|edge =

(m2
Y − m2

X)(m2
X − m2

N )

m2
X

. (3.3)

Assuming the edge position is measured with good precision, we obtain a relation among

the three trial masses. Together with the relation from mmax
T2 curve, µX and µY are fixed

for a given µN , up to a two-fold ambiguity from inversion of eq. (3.3). Then the number

of events consistent with eqs. (2.7) and (3.2), as a function of µN is given in figure 6 (a).

There is an evident peak at µN = mN .

The masses can be determined without using the measurement of the mℓℓ edge. For

each µN , we first fix µY by the mmax
T2 function. Then we vary µX to maximize the number

of consistent events. This maximum number is shown in figure 6 (b), as a function of µN .2

1This fact was first used to study tt̄ events in the dilepton channel, see, for example, ref. [18].
2When mmax

T2 (mN) < mY , which is always the case for finite number of events, the number of solvable

events at µN = mN drops much below the maximum number. Therefore, in figure 6 (b) we have added to

µY a small constant, µY = mmax

T2 + 2 GeV.
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Figure 6: Number of consistent events distribution for µY = mmax
T2

(µN ), in the two-body decay

case. Left: mX is determined from the edge of the dilepton invariant mass distribution; right: mX

is the value that maximize the number of consistent events.

Unlike the previous case, there is not a peak structure, but the number of events drops

sharply when µN > mN , which can be used to estimate the masses.

4. Discussion and conclusions

We have demonstrated the relation between the mT2 variable and the kinematic constraints

for events with two identical decay chains, each of which ends up with one missing par-

ticle. The mmax
T2 curve is equivalent to the boundary of the consistent region in the mass

space from the minimal kinematic constraints, where only the mass shell conditions of

the decaying mother particles and the final missing particles, and the measured missing

transverse momentum constraint are imposed. In fact, it should not be surprising that

many different mass determination methods are closely related since they are based on

the same kinematics. Understanding their relations may allow us to develop more effective

and powerful ways for mass determination either by finding new strategies or by combining

various approaches. Here we will try to give a general discussion of the mass determination

program based solely on kinematics.

For a given topology of new physics events, we can think of it as a map between

the “mass” space M and the “observable” space O. The mass space is the space of

the mass parameters of the new particles which appear on shell in those events. The

dimension is equal to the number of the unknown masses that are to be determined. The
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Figure 7: The map between a point in the mass space and the corresponding consistent region

in the observable space.

observable space is the multi-dimensional space of all independent kinematic observables

which are relevant for the mass determination in those events. Basically, they are made

of the momenta of the visible particles (jets and leptons) from the decay chains, and the

missing transverse momentum. Therefore, each experimental event can be represented by

a point in the observable space. In principle we can choose any basis for the observable

space. It is convenient, however, to choose combinations that are invariant under certain

transformations which do not alter the the connection between the mass parameters and

the kinematic observables. For example, if an event of certain observable momenta can

be produced by some mass parameters, a boost along the beam axis can also be produced

by the same mass parameters because the momenta along the beam axis and the energies

of the initial partons in collision are unknown. They do not have to be fully Lorentz-

invariant as the measured missing transverse momentum breaks the symmetry. For two

decay chains in an event which is the focus of most discussion, the allowed transformations

are independent boosts of the two decay chains along the beam axis and the rotation

around the beam axis, so it would be advantageous to choose the observable combinations

that are invariant under these transformations. (If there is no UTM, one can also perform

back-to-back equal transverse boosts on the two chains as the two mother particles have

equal and opposite transverse momenta in this case.)

For each point m in the mass space, there is a corresponding region f(m) ⊂ O in

the observable space which is consistent with this mass point, i.e., f(m) is made of all

possible points in the observable space that can be produced kinematically by the given

mass parameters (see figure 7). Assuming that there is a large enough set of experimental

events from this topology with the given mass parameters at m and ignoring the issues

such as experimental smearing and backgrounds for the moment, the region f(m) will

be populated by these experimental events. The relative weights and densities of the

experimental events within the region depend on other details of the underlying theory

such as the matrix elements. On the other hand, the allowed region f(m) solely depends

– 13 –
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Figure 8: The map between a point in the observable space and the corresponding consistent

region in the mass space.

on the masses of the new particles. If f(m) is unique for each point m, then in principle

all the masses can be uniquely determined given enough of experimental events. It is

possible that there are degeneracies such that different mass points map into the same

observable region, f(m) = f(m′) for m 6= m′, e.g., the case of one step two-body decay on

each chain. In that case the masses cannot be uniquely determined from kinematics alone

and additional (model-dependent) information is required. In general we expect f(m)

to be unique if the dimension of the observable space is large enough. From the above

discussion, we see that the most important events for mass determination are those which

lie near the boundary of f(m) as they determine the shape and the size of f(m). The

edge/endpoint method can be viewed as a simple application of this idea by projecting

f(m) down to a few one-dimensional subspaces and extract the endpoints of f(m) in

these one-dimensional subspaces. It is also evident that it does not fully utilize all the

relevant information contained in the experimental events as it only uses a few points on

the boundary. In particular, in the case of two visible particles in each decay chain it

does not give enough information to determine all masses, yet we know that the masses

can be determined by other methods. A generalization to look at the boundary of the

two-dimensional subspaces of f(m) is currently being studied [19]. It can potentially give

a more powerful method than the one-dimensional endpoint method. Ideally, one would

like to map out the whole boundary of f(m) in the high-dimensional observable space to

get all the information contained in the experimental events. However, dealing with the

high-dimensional space could be technically quite difficult.

The method of kinematic constraints can be considered as the inverse map of the mass

space and the observable space discussed above. Each experimental signal event which

is represented by a point p in the observable space O can define a region g(p) in the

mass space M which is consistent with that event (see figure 8). Obviously, m ∈ g(p) if

and only if p ∈ f(m). The correct mass point must lie within the region g(p) assuming

that the event is a valid signal event and no experimental smearing. By combining many
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experimental events we can find the intersection of all g(pi) for all experimental points pi,

G(E) =
⋂

pi∈E

g(pi), (4.1)

where E is the region in the observable space occupied by the experimental events. If there

are sufficiently many events, we expect E = f(mtrue) for the correct mass point mtrue. For

certain event topologies, e.g., three on-shell two-body decays for each decay chain [7], the

intersection region shrinks to a point after combining a finite number of events. Obviously it

would correspond to the correct mass point, G(E) = {mtrue}, and the mass determination

is conceptually straightforward in this case. Of course in practice, such determination will

be complicated by experimental smearing, backgrounds, and combinatorics. Non-trivial

techniques still need to be developed to resolve these issues in order to demonstrate the

viability and accuracies of mass determination in this way. On the other hand, for many

other topologies the region in the mass space consistent with all experimental events G(E)

remains finite. Näıvely one might think that this is a degeneracy and the masses cannot

be uniquely determined. However, a point in the mass space m that is consistent with all

events only implies that f(m) ⊃ E. For a generic but not the true mass point in G(E),

f(m) will be larger than E. Assuming that the map between the two spaces is continuous,

we then expect that its immediate neighborhood points m′ in many directions will still be

consistent with all events, f(m′) ⊃ E. From this argument we see that any point lying in

the middle of G(E) will not be the true mass point. For the true mass point, we should

have f(mtrue) coincide exactly with E. Such a point would have the least neighborhood

points which are still consistent with all events, or said in another way, it has the least

degrees of freedom to move while staying within G(E). This tells us that the true mass

point should lie on the boundary of the consistent mass region G(E). In particular, if there

is a sharp edge or a “kink” on the boundary of G(E), it would be a good candidate for the

true mass point. This fact has been used to develop a new method for mass determination

in ref. [6]. Now we see that the method of the mT2 kink [10, 11] is another example, as

the mmax
T2 curve is just the boundary of the consistent region in the two-dimensional mass

(sub)space based on the minimal kinematic constraints. These methods effectively attempt

to match the whole region of f(m) with the region of experimental events E as we hope

to achieve in our discussion in the previous paragraph.

In the realistic situation, such a sharp edge or “kink” of the consistent mass region

can easily be washed out after the experimental smearing and backgrounds are taken into

account. Therefore it may not be practical to directly search for the kink position. However,

understanding the structure of the consistent mass region from the kinematic constraints

allows us to develop strategies to recover the kink location by combining various techniques

that people have developed. For example, it is well known that for collider signal events

with missing energies, the difficulty is to determine the overall mass scale. The relative

masses or mass differences usually can be well constrained from the kinematic variables

such as the endpoints of invariant masses of visible particles. We can use those kinematic

variables to reduce the mass space down to a one (or low) dimensional space which contains

the true mass point. Then if we count the number of consistent events as a function of

– 15 –



J
H
E
P
1
2
(
2
0
0
8
)
0
6
3

the points along this one dimensional space, it would, in the idealized case, exhibit a sharp

turning in number of consistent events at the true mass point due to the “kink” nature

of the consistent mass region near that point. Even though the sharpness of the turning

point will be reduced by the experimental smearing and the presence of backgrounds, this

“turning” feature is expected to survive as long as we have a reasonable data set of the

signal events, and we can fit for the turning point to determine the overall mass scale. This

was illustrated in section 3.

In conclusion, we have clarified the relation between the mT2 variable and the kinematic

constraints for events with two decay chains ending with invisible particles. mT2 is a clever

variable which simply corresponds to the boundary of the allowed mass region from the

minimal kinematic constraints where only the constraints of mass shell conditions of the

mother particles and the missing particles of the two decay chains, and the measured

missing transverse momentum are used. As a by-product, we also found a faster algorithm

to calculate mT2 from the point of view of kinematic constraints. These connections can

also tell us how to develop new ways by combining different existing methods to achieve the

more powerful and accurate mass determination for events with missing energies. It will

be extremely important for reconstructing the underlying theory and verifying whether we

have discovered the dark matter particle if such new physics events with missing energies

are indeed found at the LHC.
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A. The bisection method for calculating mT2

We describe in this appendix the bisection algorithm for calculating mT2 for the bal-

anced configuration.

First, we need a method to quickly determine if two ellipses intersect, without solv-

ing the quartic equation described in section 2.3. This is done by calculating the Sturm

sequence for the quartic polynomial, which gives us the number of real solutions for the

quartic equation [14]. When the number of real solutions are zero, either the two ellipses

are outside each other, or one completely contains the other one.

For the balanced configuration, the two ellipses are outside each other for µmin
Y =

µN + max{ma,mb}. When we increase µY , both ellipses expand. It is easy to see that

they always intersect for µY in some range. Thus, we need to guess a point when they

intersect. We do this by first finding a µY such that the two ellipses enclose a same point,

for example, the origin. In this case, either they intersect or one contains the other one.

If it is the former, we have found an intersecting point which is taken as µmax
Y . If it is the

latter, which rarely happens, we need to do a scan from µmin
Y to find the intersecting point.

After obtaining µmin
Y and µmax

Y , we bisect the interval (µmin
Y , µmax

Y ) and check if the

two ellipses intersect at the middle point of the interval µmid
Y = (µmin

Y + µmax
Y )/2. If yes, we
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set the new µmax
Y = µmid

Y ; otherwise, µmin
Y = µmid

Y . We repeat this procedure until the size

of the interval is smaller than the precision we want.

The algorithm has been implemented in c++ and available at ref. [20] or from the

authors. The code has been tested for 250k events. These include 5 datasets with 50k

events each corresponding to the tt̄ production in the dilepton channel, and the two SUSY

mass points discussed in section 3. For the SUSY points, events with UTM (from squark

pair production and decay) and without UTM (from direct χ̃0
2 pair production) are tested

separately. The tests are performed for a variety of trial masses µN . The results have

been compared with ref. [21], showing good agreement in the numerical values of mT2:

the possibility is O(10−5 ∼ 10−4) for the two programs to yield values that differ by

1 GeV or more, and O(10−4 ∼ 10−3) for 0.1 GeV or more. For the events that give small

differences, our code is showing more accurate results, which can be verified in Mathematica

by examining when the two ellipses are tangent to each other. Our code is also much faster

(5–9 times as fast as ref. [21]), making it advantageous when mT2 needs to be repeatedly

calculated, for example, in evaluation of the mTGen variable [13].
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